To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
Level crossing accidents remain a significant safety concern in modern railway systems, particularly under adverse weather conditions that degrade sensor performance. This review surveys state-of-the-art sensor technologies and fusion strategies for obstacle detection at railway level crossings, with a focus on robustness, detection accuracy, and environmental resilience. Individual sensors such as inductive loops, cameras, radar, and LiDAR offer complementary strengths but involve trade-offs, including material dependence, reduced visibility, and limited resolution in harsh environments. We analyze each modality's working principles, weather-induced vulnerabilities, and mitigation strategies, including signal enhancement and machine-learning-based denoising. We further review multi-sensor fusion approaches, categorized as data-level, feature-level, and decision-level architectures, that integrate complementary information to improve reliability and fault tolerance. The survey concludes with future research directions, including adaptive fusion algorithms, real-time processing pipelines, and weather-resilient datasets to support the deployment of intelligent, fail-safe detection systems for railway safety.
Distributed time-sensitive systems must balance timing requirements (availability) and consistency in the presence of communication delays and synchronization uncertainty. This paper presents maxwait, a simple coordination mechanism with surprising generality that makes these tradeoffs explicit and configurable. We demonstrate that this mechanism subsumes classical distributed system methods such as PTIDES, Chandy-and-Misra with or without null messages, Jefferson's Time-Warp, and Lamport's time-based fault detection, while enabling real-time behavior in distributed cyber-physical applications. The mechanism can also realize many commonly used distributed system patterns, including logical execution time (LET), publish and subscribe, actors, conflict-free replicated data types (CRDTs), and remote procedure calls with futures. More importantly, it adds to these mechanisms better control over timing, bounded time fault detection, and the option of making them more deterministic, all within a single semantic framework. Implemented as an extension of the Lingua Franca coordination language, maxwait enforces logical-time consistency when communication latencies are bounded and provides structured fault handling when bounds are violated.
Autonomous robotic systems are widely deployed in smart factories and operate in dynamic, uncertain, and human-involved environments that require low-latency and robust fault detection and recovery (FDR). However, existing FDR frameworks exhibit various limitations, such as significant delays in communication and computation, and unreliability in robot motion/trajectory generation, mainly because the communication-computation-control (3C) loop is designed without considering the downstream FDR goal. To address this, we propose a novel Goal-oriented Communication (GoC) framework that jointly designs the 3C loop tailored for fast and robust robotic FDR, with the goal of minimising the FDR time while maximising the robotic task (e.g., workpiece sorting) success rate. For fault detection, our GoC framework innovatively defines and extracts the 3D scene graph (3D-SG) as the semantic representation via our designed representation extractor, and detects faults by monitoring spatial relationship changes in the 3D-SG. For fault recovery, we fine-tune a small language model (SLM) via Low-Rank Adaptation (LoRA) and enhance its reasoning and generalization capabilities via knowledge distillation to generate recovery motions for robots. We also design a lightweight goal-oriented digital twin reconstruction module to refine the recovery motions generated by the SLM when fine-grained robotic control is required, using only task-relevant object contours for digital twin reconstruction. Extensive simulations demonstrate that our GoC framework reduces the FDR time by up to 82.6% and improves the task success rate by up to 76%, compared to the state-of-the-art frameworks that rely on vision language models for fault detection and large language models for fault recovery.
Reliability-centered prognostics for rotating machinery requires early warning signals that remain accurate under nonstationary operating conditions, domain shifts across speed/load/sensors, and severe class imbalance, while keeping the false-alarm rate small and predictable. We propose the Physics-Guided Tiny-Mamba Transformer (PG-TMT), a compact tri-branch encoder tailored for online condition monitoring. A depthwise-separable convolutional stem captures micro-transients, a Tiny-Mamba state-space branch models near-linear long-range dynamics, and a lightweight local Transformer encodes cross-channel resonances. We derive an analytic temporal-to-spectral mapping that ties the model's attention spectrum to classical bearing fault-order bands, yielding a band-alignment score that quantifies physical plausibility and provides physics-grounded explanations. To ensure decision reliability, healthy-score exceedances are modeled with extreme-value theory (EVT), which yields an on-threshold achieving a target false-alarm intensity (events/hour); a dual-threshold hysteresis with a minimum hold time further suppresses chatter. Under a leakage-free streaming protocol with right-censoring of missed detections on CWRU, Paderborn, XJTU-SY, and an industrial pilot, PG-TMT attains higher precision-recall AUC (primary under imbalance), competitive or better ROC AUC, and shorter mean time-to-detect at matched false-alarm intensity, together with strong cross-domain transfer. By coupling physics-aligned representations with EVT-calibrated decision rules, PG-TMT delivers calibrated, interpretable, and deployment-ready early warnings for reliability-centric prognostics and health management.
Unplanned failures in industrial hydraulic pumps can halt production and incur substantial costs. We explore two unsupervised autoencoder (AE) schemes for early fault detection: a feed-forward model that analyses individual sensor snapshots and a Long Short-Term Memory (LSTM) model that captures short temporal windows. Both networks are trained only on healthy data drawn from a minute-level log of 52 sensor channels; evaluation uses a separate set that contains seven annotated fault intervals. Despite the absence of fault samples during training, the models achieve high reliability.
It is foreseeable that the number of spacecraft will increase exponentially, ushering in an era dominated by satellite mega-constellations (SMC). This necessitates a focus on energy in space: spacecraft power systems (SPS), especially their health management (HM), given their role in power supply and high failure rates. Providing health management for dozens of SPS and for thousands of SPS represents two fundamentally different paradigms. Therefore, to adapt the health management in the SMC era, this work proposes a principle of aligning underlying capabilities (AUC principle) and develops SpaceHMchat, an open-source Human-AI collaboration (HAIC) framework for all-in-loop health management (AIL HM). SpaceHMchat serves across the entire loop of work condition recognition, anomaly detection, fault localization, and maintenance decision making, achieving goals such as conversational task completion, adaptive human-in-the-loop learning, personnel structure optimization, knowledge sharing, efficiency enhancement, as well as transparent reasoning and improved interpretability. Meanwhile, to validate this exploration, a hardware-realistic fault injection experimental platform is established, and its simulation model is built and open-sourced, both fully replicating the real SPS. The corresponding experimental results demonstrate that SpaceHMchat achieves excellent performance across 23 quantitative metrics, such as 100% conclusion accuracy in logical reasoning of work condition recognition, over 99% success rate in anomaly detection tool invocation, over 90% precision in fault localization, and knowledge base search time under 3 minutes in maintenance decision-making. Another contribution of this work is the release of the first-ever AIL HM dataset of SPS. This dataset contains four sub-datasets, involving 4 types of AIL HM sub-tasks, 17 types of faults, and over 700,000 timestamps.
This paper introduces an unsupervised health-monitoring framework for turbofan engines that does not require run-to-failure labels. First, operating-condition effects in NASA CMAPSS sensor streams are removed via regression-based normalisation; then a Long Short-Term Memory (LSTM) autoencoder is trained only on the healthy portion of each trajectory. Persistent reconstruction error, estimated using an adaptive data-driven threshold, triggers real-time alerts without hand-tuned rules. Benchmark results show high recall and low false-alarm rates across multiple operating regimes, demonstrating that the method can be deployed quickly, scale to diverse fleets, and serve as a complementary early-warning layer to Remaining Useful Life models.
Unplanned engine failures in helicopters can lead to severe operational disruptions, safety hazards, and costly repairs. To mitigate these risks, this study compares two predictive maintenance strategies for helicopter engines: a supervised classification pipeline and an unsupervised anomaly detection approach based on autoencoders (AEs). The supervised method relies on labelled examples of both normal and faulty behaviour, while the unsupervised approach learns a model of normal operation using only healthy engine data, flagging deviations as potential faults. Both methods are evaluated on a real-world dataset comprising labelled snapshots of helicopter engine telemetry. While supervised models demonstrate strong performance when annotated failures are available, the AE achieves effective detection without requiring fault labels, making it particularly well suited for settings where failure data are scarce or incomplete. The comparison highlights the practical trade-offs between accuracy, data availability, and deployment feasibility, and underscores the potential of unsupervised learning as a viable solution for early fault detection in aerospace applications.
Control valve stiction, a friction that prevents smooth valve movement, is a common fault in industrial process systems that causes instability, equipment wear, and higher maintenance costs. Many plants still operate with conventional valves that lack real time monitoring, making early predictions challenging. This study presents a machine learning (ML) framework for detecting and predicting stiction using only routinely collected process signals: the controller output (OP) from control systems and the process variable (PV), such as flow rate. Three deep learning models were developed and compared: a Convolutional Neural Network (CNN), a hybrid CNN with a Support Vector Machine (CNN-SVM), and a Long Short-Term Memory (LSTM) network. To train these models, a data-driven labeling method based on slope ratio analysis was applied to a real oil and gas refinery dataset. The LSTM model achieved the highest accuracy and was able to predict stiction up to four hours in advance. To the best of the authors' knowledge, this is the first study to demonstrate ML based early prediction of control valve stiction from real industry data. The proposed framework can be integrated into existing control systems to support predictive maintenance, reduce downtime, and avoid unnecessary hardware replacement.